Ta có:
\(\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=\frac{n-3}{n-3}+\frac{5}{n-3}=1+\frac{5}{n-3}\)
Suy ra n-3\(\in\)Ư(5)
Ư(5)là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-3 | 1 | -1 | 5 | -5 |
n | 4 | 2 | 8 | -2 |
Vậy n=4;2;8;-2
n + 2 ⋮ n - 3 <=> ( n - 3 ) + 5 ⋮ n - 3
Vì n - 3 ⋮ n - 3 . Để ( n - 3 ) + 5 ⋮ n - 3 thì 5 ⋮ n - 3 => n - 3 ∈ Ư ( 5 ) = { + 1 ; + 5 }
Ta có : n - 3 = 1 => n = 1 + 3 = 4 ( nhận )
n - 3 = - 1 => n = - 1 + 3 = 2 ( nhận )
n - 3 = 5 => n = 5 + 3 = 8 ( nhận )
n - 3 = - 5 => n = - 5 + 3 = - 2 ( nhận )
Vậy n ∈ { + 2 ; 4 ; 8 }