a) \(A=\frac{3n-11}{n-4}=\frac{3.\left(n-4\right)+1}{n-4}=3+\frac{1}{n-4}\)
Để A có giá trị là số nguyên \(\Rightarrow\frac{1}{n-4}\in Z\Rightarrow n-4\inƯ\left(1\right)\)
\(\Rightarrow\orbr{\begin{cases}n-4=1\\n-4=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=5\\n=3\end{cases}}}\)
Vậy n=3; n=5
b) \(B=\frac{4n+1}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}=2+\frac{3}{2n-1}\)
Để B có giá trị là số nguyên \(\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)
Do đó ta có bảng:
2n-1 | -3 | -1 | 1 | 3 |
n | -1 | 0 | 1 | 2 |
Vậy n=-1; n=0; n=1; n=2
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }