Ta có:
\(\frac{20n+13}{4n+3}=\frac{20n+15}{4n+3}-\frac{2}{4n+3}=5-\frac{2}{4n+3}\)
Để \(5-\frac{2}{4n+3}\)có giá trị nhỏ nhất
=>\(\frac{2}{4n+3}\)có giá trị lớn nhất
=>4n+3 là số tự nhiên nhỏ nhất có thể
=>4n+3=3
=>n=0
\(\frac{2}{4n+3}=\frac{2}{0+3}=\frac{2}{3}\)
=>\(5-\frac{2}{3}=\frac{15}{3}-\frac{2}{3}=\frac{13}{3}=\frac{20n+13}{4n+3}\)
=>Với n=0 thì \(\frac{20n+13}{4n+3}\)đạt giá trị nhỏ nhất bằng \(\frac{13}{3}\)
KL:\(\frac{20n+13}{4n+3}\)đạt giá trị nhỏ nhất bằng \(\frac{13}{3}\)với n=0