\(2\times2^2\times2^3\times2^4\times...\times2^x=\left(2^3\right)^{12}\)
\(\Leftrightarrow2^{1+2+3+4+...+x}=2^{3\times12}\)
\(\Leftrightarrow2^{1+2+3+4+...+x}=2^{36}\)
\(\Leftrightarrow1+2+3+4+...+x=36\)
Ta có : Số số hạng = \(\frac{x-1}{1}+1=x\)
Tổng = \(\frac{\left(x+1\right)\times x}{2}=36\)
\(\Leftrightarrow\left(x+1\right)\times x=72\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow x^2-8x+9x-72=0\)
\(\Leftrightarrow x\times\left(x-8\right)+9\times\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\times\left(x+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-9\end{cases}}\)
=> x = 8 ( do x là số nguyên dương )