Giải: Để \(\frac{4a-5}{a+2}\)là số nguyên <=> 4a - 5 \(⋮\)a + 2
<=> 4(a + 2) - 13 \(⋮\)a + 2
<=> 13 \(⋮\)a + 2
<=> a + 2 \(\in\)Ư(13) = {1; -1; 13 ; -13}
Lập bảng :
a + 2 | 1 | -1 | 13 | -13 |
a | -1 | -3 | 11 | -15 |
Vậy ...
Để \(\frac{4a-5}{a+2}\) là số nguyên thì
\(4a-5⋮a+2\)
Mà \(a+2⋮a+2\)
\(\Rightarrow4\left(a+2\right)⋮a+2\)
\(\Rightarrow\left(4a-5\right)-\left(4a+8\right)⋮a+2\)
\(\Rightarrow4a-5-4a-8⋮a+2\)
\(\Rightarrow-13⋮a+2\)
\(\Rightarrow a+2\inƯ\left(13\right)\)
\(\Rightarrow a+2\in\left\{\pm1;\pm13\right\}\)
\(\Rightarrow a\in\left\{-3;-1;11;-15\right\}\)
Để \(\frac{4a-5}{a+2}\in Z\Leftrightarrow\left(4a-5\right)⋮\left(a+2\right)\)
\(4\left(a+2\right)-13⋮\left(x+2\right)\)
\(-13⋮\left(x+2\right)\)
\(\left(x+2\right)\inƯ\left(-13\right)\)
\(\left(x +2\right)\in\left(\pm1;\pm13\right)\)
\(x\in\left(-3;-2;11;-15\right)\)
=>vậy x=......tự làm