\(\frac{7}{3};\frac{3}{19};-12;\frac{100}{31}\)
Số nghịch đảo của 3/7 là 7/3
Số nghịch đảo của 6 là 1/6
Số nghịch đảo của 1/3 là 3
Số nghịch đảo của -1/12 là -12
Số nghịch đảo của 0,31=31/100 là 100/31
\(\frac{7}{3};\frac{3}{19};-12;\frac{100}{31}\)
Số nghịch đảo của 3/7 là 7/3
Số nghịch đảo của 6 là 1/6
Số nghịch đảo của 1/3 là 3
Số nghịch đảo của -1/12 là -12
Số nghịch đảo của 0,31=31/100 là 100/31
Các bạn ơi giúp mk với:
Cho \(M=\frac{1}{7+\frac{1}{5+\frac{1}{3+\frac{1}{2}}}}+\frac{1}{9+\frac{1}{8+\frac{1}{7+\frac{1}{6}}}}\) và \(N=\frac{1}{3+\frac{1}{5+\frac{1}{7+\frac{1}{a+\frac{1}{b}}}}}\)
a) Tính giá trị của M viết dưới dạng phân số
b) Tìm các số tự nhiên a,b biết \(N=\frac{3655}{11676}\)
Thực hiện các phép tính sau:
a) \(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
b) \(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
c) \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
Giúp em với mọi người ơi! Em đang rất cần!
Hàm số bậc nhất sau đồng biến hay nghịch biến
y=\(\frac{x+7}{4}-\frac{1-3x}{6}\)
Nghịch đảo của kết quả phép tính :\(5-\frac{5}{7-\frac{5}{7-\frac{5}{7-\frac{5}{7}}}}\)
Tính tổng sau:
\(A=\frac{1}{\left[\sqrt[3]{2}\right]}+\frac{1}{\left[\sqrt[3]{3}\right]}+\frac{1}{\left[\sqrt[3]{4}\right]}+\frac{1}{\left[\sqrt[3]{5}\right]}+\frac{1}{\left[\sqrt[3]{6}\right]}+\frac{1}{\left[\sqrt[3]{7}\right]}+\frac{1}{\left[\sqrt[3]{9}\right]}+...+\frac{1}{\left[\sqrt[3]{2012^3-1}\right]}\)
(trong tổng trên không có các số dạng \(\frac{1}{\left[\sqrt[3]{n}\right]}\) với n là lập phương 1 số nguyên,ví dụ:1 và 8)
Cho 3 số thực dương a,b,c thỏa mãn : \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015.\)
Tìm \(GTLN\) của biểu thức sau: \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
1 Tính
\(\frac{\sqrt{7}-5}{2}-\frac{6}{\sqrt{7}-2}+\frac{1}{3+\sqrt{7}}+\frac{3}{5+2\sqrt{7}}\)
2 Cho
\(A=\left(\frac{\sqrt{x}-4}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\)
Rút gọn A
Tìm các giá trị nguyên của x để \(\frac{7}{A}\)là số nguyên
1) Rút gọn biểu thức:
a) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
b) \(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
c) \(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
d) \(\frac{4}{\sqrt{5}-\sqrt{2}}+\frac{3}{\sqrt{5}-2}-\frac{2}{\sqrt{3}-2}+\frac{\sqrt{3}-1}{6}\)