Trước hết, ta có số hoán vị của nn phần tử là :
Pn=n!Pn=n!
Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .
Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :
* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).
* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.
Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :
2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!
hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.
Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :
n!−2(n−1)!=(n−2)(n−1)!.
Trước hết, ta có số hoán vị của nn phần tử là :
Pn=n!Pn=n!
Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .
Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :
* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).
* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.
Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :
2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!
hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.
Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :
n!−2(n−1)!=(n−2)(n−1)!.
Trước hết, ta có số hoán vị của nn phần tử là :
Pn=n!Pn=n!
Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .
Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :
* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).
* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.
Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :
2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!
hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.
Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :
n!−2(n−1)!=(n−2)(n−1)!.
Trước hết, ta có số hoán vị của nn phần tử là :
Pn=n!Pn=n!
Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .
Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :
* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).
* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.
Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :
2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!
hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.
Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :
n!−2(n−1)!=(n−2)(n−1)!.
Trước hết, ta có số hoán vị của nn phần tử là :
Pn=n!Pn=n!
Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .
Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :
* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).
* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.
Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :
2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!
hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.
Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :
n!−2(n−1)!=(n−2)(n−1)!.
Trước hết, ta có số hoán vị của nn phần tử là :
Pn=n!Pn=n!
Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .
Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :
* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).
* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.
Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :
2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!
hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.
Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :
n!−2(n−1)!=(n−2)(n−1)!.