Ta có : 2019.2021 = (2020 - 1).(2020 + 1)
= 2020.2020 + 2020 - 2020 - 1.1
= 2020.2020 - 1 = 2020.2019 + 2020 - 1
= 2020.2019 + 2019
Vì 2020.2019 \(⋮\)2020
mà 2019 : 2020 = 0 dư 2019
=> 2020.2019 + 2019 : 2020 dư 2019
hay 2019.2021 : 2020 dư 2019
C1:Ta có:\(2019\equiv-1\left(mod2020\right)\)
\(2021\equiv1\left(mod2020\right)\)
\(\Rightarrow2019.2021\equiv\left(-1\right).1\left(mod2020\right)\)
\(\Rightarrow2019.2021\equiv-1\left(mod2020\right)\)hay 2019.2021 chia 2020 dư 2019
C2:Ta có:\(2019.2021=2019.\left(2020+1\right)=2019.2020+2019\)
Vì 2019.2020 chia hết cho 2020 và 2019 chia 2020 dư 2019 nên 2019.2020+2019 chia 2020 dư 2019 hay 2019.2021 chia 2020 dư 2019
2019 . 2021 = 2019( 2020 + 1 ) = 2019.2020 + 2019.1 = 2019.2020 + 2019
2019.2020 chia hết cho 2020 => 2019.2020 + 2019 chia 2020 dư 2019
hay 2019.2021 chia 2020 dư 2019