tìm số dư của 2020^2021+2021^2020 chia cho 13
=> dư 1
+/ 2020 ≡ 5 mod 13 -> 2020^2021 ≡ 5^2021 mod 13 (1)
ta có 5^2020 = 5^(2x1010) = 25^1010 ≡ 25 mod 13, mà 25 ≡ 12 mod 13 (25 chia 13 dư 12)
-> 5^2020 = 25^1010 ≡ 12 mod 13
-> 5^2021 = 5^2020 x 5 ≡ 12 x 5 mod 13
<-> 5^2021 = 5^2020 x 5 ≡ 60 mod 13, mà 60 ≡ 8 mod 13 ( 60 chia 13 dư 8)
-> 5^2021 ≡ 8 mod 13 (2)
từ (1), (2) => 2020^2021 ≡ 8 mod 13 hay 2020^2021 chia 13 dư 8 (*)
+/ 2021 ≡ 6 mod 13 -> 2021^2020 ≡ 6^2020 mod 13 (3)
6^2020=6^(2x1010) ≡ 6 mod 13 (4)
từ (3), (4) -> 2021^2020 ≡ 6 mod 13 hay 2021^2020 chia 13 dư 6 (**)
từ (*), (**)
-> 2020^2021+2021^2020 ≡ 8 + 6 mod 13
<-> 2020^2021+2021^2020 ≡ 14 mod 13, mà 14 ≡ 1 mod 13 ( 14 chia 13 dư 1)
-> 2020^2021+2021^2020 ≡ 1 mod 13, hay 2020^2021+2021^2020 chia 13 dư 1
Vậy 2020^2021+2021^2020 chia 13 dư 1