\(2^3\equiv1\left(mod7\right)\)
\(\Rightarrow\left(2^3\right)^{668}.2^2\equiv1^{668}.2^2\left(mod7\right)\)
\(\Rightarrow2^{2006}\equiv4\left(mod7\right)\)
-Vậy: \(2^{2006}\) chia 7 dư 4
\(2^{2006}=\left(2^{17}\right)^{118}=131072^{118}\)
Ma \(131072\equiv4\left(mod7\right)\)=>\(131072^{118}=4\left(mod7\right)\)
=> 131072^118 hay 2^2006 chia 7 du 3