để mình xem đáp án là số nào
gọi hàng nghìn là a => 0<a<10
so can tim có dang
a.10^3+(a-1).10^2+(a+1).10+(a+2)
a.(10^3+10^2+10+1)-100+10+2
1111.a-88=11.101.a-8.11=11(101.a-8)
=> 101.a-8=11n^2
\(\left(101.a-8\right)⋮11\)
101 chia 11 dư 2
-8 chia 11 dư 3
=> để chia hết cho 11 a chia 11 dư 4=> a=4 (duy nhất có thể chưa đủ)
với a=4 có \(\frac{101.4-8}{11}=36=6^2\)(Đủ =>nhận)
số cần tìm là: 11^2.6^2
Số chính phương có chữ số tận cùng bằng 0; 1; 4; 5; 6; 9
Vậy sô chinh phương cần tìm có thể là : 1234; 2345; 3456; 6789.
1234 \(⋮\)2 nhưng không chia hết cho 22 => không phai số chính phương
2345 \(⋮\)5 nhưng không chia hết cho 52 => không phai số chính phương
3456 \(⋮\)2 và chia hết cho 22 => số chính phương
6789 \(⋮\)3 nhưng không chia hết cho 32 => không phai số chính phương
Vậy số chính phương cần tìm là 3456
\(3456⋮2\)và chia hết 4 => là số Cp =>kết luật chưa chuẩn, "nó chỉ là ĐK cần thôi chưa đủ"
ví dụ: 28 chia hết cho 2 và chia hết cho 4 có phải là số CP đâu.
xem 3456 có phải không 3456:8=432:8=54:9=6=8.8.9.6=> không phải nhé
Số chính phương có tận cùng bằng 0; 1; 4; 5; 6; 9
Vậy sô chính phương cần tìm có thể là : 1234; 2345; 3456; 6789
1234 chia hêt cho 2, không chia hết cho 22 => không phải số chính phương.
2345 chia hết cho 5 không chia hết cho 55 => không phải số chính phương.
3456 chia hết cho 9 không chia hết cho 99 => không phải số chính phương.
6789 chia hết cho 3 không chia hết cho 33 => không phải số chính phương.
Không có số chính phương nào thỏa với yêu cầu đề bài
112.62 = 662 = 4356 đúng là số chính nhưng không đúng với yêu cầu đề."làm thành 4 số tự nhiên liên tiếp tăng dần"
@Barack Obama
Sai rồi
Chữ số hàng nghìn phải nhỏ hơn chữ số hàng trăm chứ
Mà 3<4
Đáp số sai rồi
4 số tự nhiên liên tiếp là n,n+1,n+2,n+3
viết theo hàng nghìn,trăm,chuc,don vị là
1000n+100(n+1)+10(n+2)+n+3=1111n+123
viết theo thứ tự ngược lại là
1000(n+3)+100(n+2)+10(n+1)+n=1111n+321...
vậy lớn hơn số ban đầu là 3210-123=3087
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356