\(\overline{ab,c}xdx1,1=40,5x1,1\Rightarrow\overline{ab,c}xd=40,5=13,5xx3\)
\(\Rightarrow\overline{ab,c}=13,5\) ; \(d=3\)
\(a b , c × d , d = 44 , 55 \)
\(a b , c × d × 1 , 1 = 44 , 55\)
\(a b , c × d = 44 , 55 : 1 , 1=40 , 5\)
\(a b , c × d = 13 , 5 × 3\)
\(=>a b , c = 13 , 5 \)
Vậy \(a=1 ; b=3 ; c=5 ; d=3\)
ab,c×d,d=44,55
=ab,c×d×1,1=40,5×1,1
=ab,c×d=13,5×3
=ab,c=13,5;d=3