Tìm các số a,b thỏa mãn a^2018+ b^2018 = a^2017+b^2017= a^2016+ b^2016
Cho hai số a, b dương thỏa mãn:\(a^{2016}+b^{2016}=a^{2017}+b^{2017}=a^{2018}+b^{2018}\)
Tính giá trị biểu thức: \(a^{2017}+b^{2017}\)
cho a,b,c là các số thực khác 0 và(a+b+c)( \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) =1
tinh P= (a2016 -b2016)(b2017+c2017)(c2018-a2018)
A=\(\frac{2017^{2016}+1}{2017^{2017}+1}\) B=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)
A=2016^2017+1/2016^2018+1 với B=2016^2015+1/2016^2016+1
giúp mình với
so sánh biểu thức A = 2015 x 2017 + 2016 x 2018 và B=2016^2+2017^2-2
ai làm sẽ dc tick
cho a,b,c là các số nguyên . Chứng minh rằng nếu a^2016 + b^2017 + c^2018 chia hết cho 6 thì a^2018 + b^2019 + c^2020 cũng chia hết cho 6.
Giúp mk với! :)
Cho các số a, b, c không âm thỏa mãn \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính giá trị của biểu thức \(a^{2016}+b^{2017}+c^{2018}\)
cho a,b là hai số dương thỏa mãn a^2015+b^2015=a^2016+b^2016=a^2017+b^2017. Tinh P =20a+8b+2017