Đáp án:
hoặc
Giải thích các bước giải:
Do
nhỏ nhất là
Ước dương của
Do lẻ và
Vậy số thoả mãn là hoặc
Đáp án:
hoặc
Giải thích các bước giải:
Do
nhỏ nhất là
Ước dương của
Do lẻ và
Vậy số thoả mãn là hoặc
Bài 1: Tìm \(\overline{abcde}\), biết
1) \(\sqrt{\overline{abcde}}\) = 5e + 1
2) \(\sqrt{\overline{abcde}}\) = \(\left(ab\right)^3\)
Bài 2: Cho a, b>0: \(a^{2012}\)+ \(b^{2012}\) = \(a^{2013}\)+\(b^{2013}\)=\(a^{2014}\)+\(b^{2014}\)
Bài 3: Tìm a, b, c: a.( a + b + c ) = \(-\dfrac{1}{24}\)
c.( a + b + c ) = \(-\dfrac{1}{72}\)
b.( a + b + c ) = \(\dfrac{1}{16}\)
(cứu mih với ạ uhuhuhu)
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Tìm số tự nhiên \(\overline{ab}\), biết: \(1+2+3+...+\overline{bc}=\overline{abc}\)
Cho biết:\(\overline{\frac{abc}{\overline{bc}}=\frac{\overline{bca}}{\overline{ca}}=\frac{\overline{cab}}{\overline{ab}}}\)
Tính tổng:\(\frac{a}{\overline{bc}}+\frac{b}{\overline{ca}}+\frac{c}{\overline{ab}}\)
Tìm \(\overline{ab}\), biết:
\(\overline{3ab3}=87.\overline{ab}\)
Tìm các chữ số a,b,c thỏa mãn: \(\frac{1}{\overline{ab}.\overline{bc}}+\frac{1}{\overline{bc}.\overline{ca}}+\frac{1}{\overline{ca}.\overline{ab}}=\frac{11}{3321}\)
CHO BIẾT \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
CHỨNG MINH RẰNG \(a=b=c\)
Tìm giá trị K:
\(K=\frac{\overline{a}\overline{b}}{\overline{a}\overline{b}\overline{c}}=\frac{\overline{b}\overline{c}}{\overline{b}\overline{c}\overline{a}}=\frac{\overline{c}\overline{a}}{\overline{c}\overline{a}\overline{b}}\)
\(K=\frac{\overline{a}\overline{b}\overline{c}}{\overline{a}\overline{b}+c}=\frac{b\overline{c}\overline{a}}{\overline{b}\overline{c}+a}=\frac{\overline{c}\overline{a}\overline{b}}{\overline{c}\overline{a}+b}\)
PLEASE HELP ME !!! Mik đang cần gấp
Cho \(\frac{a+\overline{bc}}{\overline{abc}}=\frac{b+\overline{ca}}{\overline{bca}}=\frac{c+\overline{ab}}{\overline{cab}}\)
Chứng minh \(\frac{\overline{bc}}{a}=\frac{\overline{ca}}{b}\frac{\overline{ab}}{c}\)