<=> 3003+ab.10=87.ab <=> 3003=77ab <=> ab=39
3003+10.ab = 87.ab
=> 3003=77.ab => ab = 3003:77=39
<=> 3003+ab.10=87.ab <=> 3003=77ab <=> ab=39
3003+10.ab = 87.ab
=> 3003=77.ab => ab = 3003:77=39
tìm \(\overline{abcde}\) biết \(\overline{abcde}\) = 2.\(\overline{ab}\).\(\overline{cde}\)
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Tìm số tự nhiên \(\overline{ab}\), biết: \(1+2+3+...+\overline{bc}=\overline{abc}\)
Cho biết:\(\overline{\frac{abc}{\overline{bc}}=\frac{\overline{bca}}{\overline{ca}}=\frac{\overline{cab}}{\overline{ab}}}\)
Tính tổng:\(\frac{a}{\overline{bc}}+\frac{b}{\overline{ca}}+\frac{c}{\overline{ab}}\)
Tìm các chữ số a,b,c thỏa mãn: \(\frac{1}{\overline{ab}.\overline{bc}}+\frac{1}{\overline{bc}.\overline{ca}}+\frac{1}{\overline{ca}.\overline{ab}}=\frac{11}{3321}\)
CHO BIẾT \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
CHỨNG MINH RẰNG \(a=b=c\)
Tìm \(\overline{ab}\), biết:
\(\sqrt{\overline{ab}}=a+b\)
Cho a,b,c đôi một khác nhau và khấc 0. Biết \(\overline{ab}\) là số nguyên tố và \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\)
Tìm só \(\overline{abc}\)
Cho \(\frac{a+\overline{bc}}{\overline{abc}}=\frac{b+\overline{ca}}{\overline{bca}}=\frac{c+\overline{ab}}{\overline{cab}}\)
Chứng minh \(\frac{\overline{bc}}{a}=\frac{\overline{ca}}{b}\frac{\overline{ab}}{c}\)