Để A \(\in\)Z \(\Rightarrow\)\(\frac{n^2-7}{n-3}\)\(\in\)Z
\(\Rightarrow\)n2 - 7 \(⋮\)n - 3
\(\Rightarrow\)n.( n - 3) + 3n - 7 \(⋮\)n - 3 ( vì n.(n -3) \(⋮\)n - 3 )
\(\Rightarrow\)3n - 7 \(⋮\)n - 3
\(\Rightarrow\) (3n -9) + 2 \(⋮\)n - 3
\(\Rightarrow\)2 \(⋮\)n - 3
\(\Rightarrow\)n - 3 \(\in\)Ư(2) = { -2; -1; 1; 2}
\(\Rightarrow\)n \(\in\){ 1; 2; 4; 5}
Thử lại các giá trị trên, ta có: n \(\in\){1; 2; 4; 5} thỏa mãn.
Vậy: n \(\in\){1; 2; 4; 5}
- Đúng thì k cho mình nhé !!
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)