tìm n :\(2\cdot2^2+3.2^3+4\cdot2^4+.....+n\cdot2^n=2^{n+10}\)
CÂU 5:
Tìm số tự nhiên n thoả mãn: \(2\cdot2^2+3\cdot2^3+4\cdot2^4+.....+n\cdot2^n=2^{n+5}\)
MÌNH TICK CHO
Tìm số ngyên n biết \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
tìm số nguyên x
a)\(27^n:3^n=9\)
b)\(\left(\frac{-1}{3}\right)^N=\frac{1}{81}\)c)\(\frac{25}{5^n}=5\)d)\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)e)\(\frac{81}{\left(-3\right)^n}=-243\)
Bn nào giải đc câu nào thì giải nhé ko giải đc câu nào thì thôi
Tìm số tự nhiên n thỏa mãn \(2\cdot2^2+3\cdot2^3+...n\cdot2^n=2^{n+5}\)
Viết các biểu thức số sau dưới dạng an(a\(\in\)Q,n\(\in\)N)
a,\(9\cdot3^3\cdot\frac{1}{81}\cdot3^2\)
b,\(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)\)
c,\(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2\)
d,\(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2\)
Tính \(\frac{B}{A}\)biết
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}+...+\frac{1}{2008\cdot2009\cdot2010}\)
Bài 1:
a) \(\frac{1}{1}\cdot2+\frac{1}{2}\cdot3+\frac{1}{3}\cdot4+...+\frac{1}{n}\cdot\left(n+1\right)\)
b) \(\frac{1}{1}\cdot2\cdot3+\frac{1}{2}\cdot3\cdot4+\frac{1}{3}\cdot4\cdot5+...+\frac{1}{a}\cdot\left(a+1\right)\cdot\left(a+2\right)\)
Bài 1
a, A= \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\) ( \(n\in N\) )
b, Chứng minh rằng A<1
Giups mìk vs ạ