Ta có :
\(2n+1=2n-12+12+1=2n-12+13=2.\left(6-n\right)+13\)
Để \(\left(2n+1\right)\)chia hết cho \(\left(6-n\right)\)thì \(2.\left(6-n\right)+13\)chia hết cho \(\left(6-n\right)\)mà \(2.\left(6-n\right)\)chia hết cho \(6-n\)nên \(13\)chia hết cho \(6-n\)\(\Rightarrow6-n\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow6-n\in\left\{-13;-1;1;13\right\}\)
Vì \(n\in N\)nên ta có bảng sau :
6-n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
N/xét | chọn | chọn | chọn | loại |
Vậy với \(n\in\left\{5;7;19\right\}\) thì \(\left(2n+1\right)\)chia hết cho \(\left(6-n\right)\)
Ủng hộ mk nha !!! ^_^