\(\hept{\begin{cases}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{cases}}\)
Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\)
\(\sqrt{y+2}=b\left(b\ge0\right)\)
Khi đó hpt có dạng:
\(\hept{\begin{cases}a-3b=2\\2a+5b=15\end{cases}\Rightarrow\hept{\begin{cases}2a-6b=4\\2a+5b=15\end{cases}}\Rightarrow\hept{\begin{cases}-11b=-11\\2a+5b=15\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\2a+5.1=15\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=5\end{cases}\left(TM\right)}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=5\\\sqrt{y+2}=1\end{cases}\Rightarrow\hept{\begin{cases}x-1=25\\y+2=1\end{cases}\Rightarrow}\hept{\begin{cases}x=26\\y=-1\end{cases}}}\)