\(x^2-xy=x-3y+2017\)
<=> \(x\left(x-y\right)=\left(3x-3y\right)-2x+2017\)
<=> \(x\left(x-y\right)-3\left(x-y\right)+2x-6=2017-6\)
<=> \(\left(x-y\right)\left(x-3\right)+2\left(x-3\right)=2011\)
<=> \(\left(x-3\right)\left(x-y+2\right)=2011\)
Vì x, y nguyên nên x - 3 và x - y + 2 là số nguyên
Có thể xảy ra các TH:
TH1: x -3 =1 ; x -y +2 =2011
<=> x = 4; y = -2005 tm
TH2: x -3 = 2011; x - y + 2 = 1
Tự tính
TH3 : x -3 =-1; x -y +2 =-2011. Tự tính.
TH4: x - 3 = -2011; x - y + 2 =-1. Tự tính.