Ta có \(N\left(x\right)=x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)\)
=> \(N\left(x\right)=\left(x-\frac{1}{2}\right)\left(x+2\right)\)
Khi N (x) = 0
=> \(\left(x-\frac{1}{2}\right)\left(x+2\right)=0\)
=> \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+2=0\end{cases}}\)=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-2\end{cases}}\)
Vậy N (x) có 2 nghiệm là: \(\hept{\begin{cases}x=\frac{1}{2}\\x=-2\end{cases}}\).