<=> (2y)2 = 4x4 + 4x3 + 4x2 + 4x + 4 (*)
Đặt P(x) = 4x4 + 4x3 + 4x2 + 4x + 4
1./ 3x2 + 4x + 4 = 3[x2 + 2x*2/3 +(2/3)2] +4 - 4/3 = (x + 2/3)2 + 8/3 > 0 với mọi x
=> P(x) > Q(x) = 4x4 + 4x3 + 4x2 + 4x + 4 - (3x2 + 4x + 4) = 4x4 + 4x2 + x2 = (2x2 + x)2 (1)
2./ 5x2 >= 0 với mọi x
=> P(x) <= 4x4 + 4x3 + 4x2 + 4x + 4 + 5x2 = 4x4 + 4x3 + 9x2 + 4x + 4 = 4x4 + x2 + 4 + 2.2x2.x + 2.2x2.2 + 2.x.2 = (2x + x + 2)2 (2)
Với x = 0 thì PT có 2 nghiệm là (x=0;y=1) và (x=0;y=-1)Với x khác 0 thì: P(x) < (2x + x + 2)2 với mọi x (2)Từ (1) và (2) suy ra: (2x2 + x)2 < P(x) = (2y)2 < (2x + x + 2)2
Do đó số chính phương (2y)2 bị kẹp giữa 2 số chính phương chẵn (hoặc lẻ) liên tiếp. Nên 2|y| chỉ có thể là số kẹp giữa |2x2 + x| và |2x2 + x + 2| => 2|y| = |2x2 + x + 1| Khi đó (2y)2 = (2x2 + x + 1)2 = 4x4 + 4x3 + 5x2 + 2x + 1
Thay vào (*) => 4x4 + 4x3 + 5x2 + 2x + 1 = 4x4 + 4x3 + 4x2 + 4x + 4
=> x2 - 2x - 3 = 0 => (x + 1)(x - 3) = 0.
Với x = -1 thì y = 1 hoặc -1
Với x = 3 thì y = 11 hoặc -11.
3./ Vậy PT có 6 cặp nghiệm nguyên là: (0;1); (0;-1); (-1;1); (-1;-1); (3;11); (3;-11).