Tìm nghiệm nguyên của phương trình x2+px+q=0 biết p+q=198
tìm nghiệm nguyện của phương trình x^2+px+q=0 biết q+p=198
Tìm số nguyên tố p, biết rằng phương trình \(x^2+px-12p=0\)có hai nghiệm đều là số nguyên.
Cho phương trình: x^2-px+q=0. Trong đó, p vá q là các số nguyên tố. Biết phương trình có 2 nghiệm dương phân biệt. Chứng minh p^2 +q^2 là 1 số nguyên tố
Mk cần gấp, mấy bn giải giúp mk nha
Biết rằng phương trình: \(x^2+px+1=0\)có hai nghiệm là a,b và phương trình \(x^2+qx+2=0\)có hai nghiệm là b,c. Hãy tính giá trị của biểu thức \(A=p.q-\left(b-a\right).\left(b-c\right)\)
Phương trình \(x^2+px+1=0\) có hai nghiệm a và b
Phương trình\(x^2+qx+2=0\) có hai nghiệm b và c
Tìm \(A=pq-\left(b-a\right)\left(b-c\right)\)
Tìm nghiệm nguyên của phương trình
\(x^2+x=y^4+y^3+y^2+y\)
2 Tìm nghiệm nguyên của phương trình :
\(3x^2+4y^2+6x+3y-4=0\)
giả sử a,b là nghiệm của phương trình \(x^2+px+1=0\)
giả sử c,d là nghiệm của phương trình \(x^2+qx+1=0\)
chứng minh hệ thức: (a-c)(a+d)(b+d)=\(q^2-p^2\)
cho các phương trình x^2+mx+ nvà x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt