( mik k ghi đề nhé bn)
a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16
=> 8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16
=> 16xy = 16
=> xy = 1
Vì x, y nguyên => x = 1, y = 1 hoặc x = -1, y = -1
mik xin lỗi nha, mik chỉ bt làm câu a
( mik k ghi đề nhé bn)
a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16
=> 8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16
=> 16xy = 16
=> xy = 1
Vì x, y nguyên => x = 1, y = 1 hoặc x = -1, y = -1
mik xin lỗi nha, mik chỉ bt làm câu a
Tìm cặp số nguyên (x;y) thỏa mãn đẳng thức:
\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
Rút gọn:
a) \(7x\left(2x-5\right)+\left(4x-3\right)\left(x+2\right)-16x^2\)
b) \(\left(x+y^2\right)+\left(3x-y^2\right)-2\left(y+3\right)\left(y-3\right)\)
c) \(\left(2x+3y\right)^2+\left(2x-3y\right)^2-2\left(4x^2-9y^2\right)\)
Phân tích các đa thức sau thành nhân tử :
a/ \(10x\left(x-y\right)-6y\left(y-x\right)\)
b/ \(14x^2y-21xy^2+28x^3y^2\)
c/ \(x^2-4+\left(x-2\right)^2\)
d/ \(\left(x+1\right)^2-25\)
e/ \(x^2-4y^2-2x+4y\)
f/ \(x^2-25-2xy+y^2\)
g/ \(x^3-2x^2+x-xy^2\)
h/ \(x^3-4x^2-12x+27\)
i/ \(x^2+5x-6\)
m/ \(6x^2-7x+2\)
n/ \(4x^4+81\)
Tính :
a) \(\left(4x^2+2xy^2-xy\right):xy\)
b) \(\left(y-x\right)^2:\left(x-y\right)\)
c) \(\left(27x^3+y^3\right):\left(3x+y\right)\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(4x-1\right)\left(x-1\right)\)
e) \(y\left(3y-1\right)+3y-y^2\)
f ) \(\left(4y-1\right)\left(y+3\right)\)
g) \(\left(x^2+2xy\right):\left(x+2y\right)\)
Phân tích đa thức thành nhân tử
\(a.\left(x^2+4x-3\right)^2-5x\left(x^2+4x-3\right)+6x^2\)
B. \(x^2-2xy+y^2+3x-3y-4\)
\(c.\left(12x^2-12xy+3y^2\right)-10\left(2x-y\right)+8\)
\(d.\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
chứng minh các biểu thức sau không phụ thuộc vào biến :
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(8-1\right)\)
d ) \(\left(x+y+z\right)^2+\left(x-y\right)^2-\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
CÁC BẠN GIÚP MÌNH VỚI
các anh chị cộng tác viên ơi giúp em với
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến (với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)
a)\(\left(x^2+x\right)^2+3\left(x^2+x\right)+2\)
b)\(\left(x-y\right)^2+4\left(x-y\right)-12\)
c)\(x^2-2xy+y^2+3x-3y-10\)
d)\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
chia đa thức \(\left(4x^5+3xy^4-y^5+2x^4y-6x^3y^2\right)\div\left(2x^3+y^3-2xy^2\right)\)