Lời giải:
$D=\frac{2(3n+1)-5}{3n+1}=2-\frac{5}{3n+1}$
Để $D$ max thì $\frac{5}{3n+1}$ min
$\Rightarrow 3n+1$ max
$\Rightarrow n$ max
Với $n$ nguyên thì không có giá trị $n$ max. Nên không tồn tại $n$ nguyên để $D$ max.
Lời giải:
$D=\frac{2(3n+1)-5}{3n+1}=2-\frac{5}{3n+1}$
Để $D$ max thì $\frac{5}{3n+1}$ min
$\Rightarrow 3n+1$ max
$\Rightarrow n$ max
Với $n$ nguyên thì không có giá trị $n$ max. Nên không tồn tại $n$ nguyên để $D$ max.
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
cho P = 3n+5/6n(n thuộc Z,n khác 0)
a)tìm n để P có giá trị lớn nhất
b)tìm GTLN đó
tìm giá trị nguyên n để phân số A=\(\dfrac{6n-3}{3n+1}\)có giá trị nguyên
Cho phân số P= 3n+1/n-3 ( n thuộc Z )
a) Tìm n để P có GTLN. GTLN đó bằng bao nhiêu?
b) Tìm n để P có GTNN. GTNN đó bằng bao nhiêu?
Cho A= 6n-1/3n+2 (n€Z)
a) Tìm n€Z để A có giá trị nguyên
b) Tìm n€Z để A có giá trị nhỏ nhất
a=6n-1/3n+2 . tìm n thuộc Z để a có giá trị nguyên
A=6n-1/3n+2
a)Tìm n thuộc Z để A có giá trị nguyên
b)Tìm n thuộc Z để A có giá trị nhỏ nhất
cho p/s A=6n-1/ 3n+2
a) tìm n thuộc Z để A thuộc Z
b tìm n thuộc z để A có GTNN
Bài 1 : tìm x , y thuộc z :
a) x/3 - 4/y = 1/5
b) 3/11 + x/22 = y/11
Bài 2 : tìm n thuộc z sao cho để các phân số sau có giá trị nguyên:
A= 3n+4/ n - 1.
B= 6n-3/ 3n + 1