n+4 chia hết n+1
ta có: n+4= (n+1)+3
=> n+1+3 chia hết n+1
=> 3 chia hết n+1
=>n+1€Ư(3)={1;3}
=> n+1=1 n+1=3
n=1-1 n=3-1
n=0 n=2
vậy n thuộc {0;2}
\(n+4⋮n+1\)
\(\Rightarrow\left(n+1\right)+3⋮n+1\)
có \(n+1⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)\) ; \(n\in Z\Rightarrow n+1\in Z\)
\(\Rightarrow n+1\in\left\{-1;-3;1;3\right\}\)
\(\Rightarrow n\in\left\{-2;-4;0;2\right\}\)