Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
AuMobile

Tìm n thuộc Z, để n+3/n-2 thuộc Z

Chứng tỏ phân số n+1/n+2 là phân số tối giản( n thuộc Z)

l҉o҉n҉g҉ d҉z҉
28 tháng 4 2016 lúc 22:38

Gọi d là ƯC(n+1 ; n+2)

=> n+1 chia hết cho d  và n+2 chia hết cho d

=>(n+2)-(n+1) chia hết d

=> 1 chia hết d

=> D=1

Vậy n+1/n+2 là phân số tối giản

l҉o҉n҉g҉ d҉z҉
28 tháng 4 2016 lúc 22:37

Để n+3/n-2 \(\in\) Z

=> n+3 chia hết n-2

=> n-2 + 5 chia hết n-2

=> 5 chia hết n-2

=> n-2 \(\in\) Ư(5)={-1;1;-5;5}

Ta có: 

n-2-11-55
n13-37
Hà Thị Quỳnh
28 tháng 4 2016 lúc 22:45

 Ta có \(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)

Để \(\frac{n+3}{n-2}\in Z\) thì \(\frac{5}{n-2}\in Z\Leftrightarrow\left(n-2\right)\in\text{Ư}\left(5\right)=\text{ }\left\{-5;-1;1;5\right\}\)

\(\left(+\right)n-2=-5\Leftrightarrow n=-3\left(tm\right)\)

\(\left(+\right)n-2=-1\Leftrightarrow n=1\left(tm\right)\)

\(\left(+\right)n-2=1\Leftrightarrow n=3\left(tm\right)\)

\(\left(+\right)n-2=5\Leftrightarrow n=7\left(tm\right)\)

Vậy để \(\frac{n+3}{n-2}\in Z\) thì \(n\in\left\{-3;1;3;7\right\}\)


Các câu hỏi tương tự
Lucy Yumio
Xem chi tiết
pham duc le hoan
Xem chi tiết
Vũ Hoài Thu
Xem chi tiết
Nguyễn Quang Hải
Xem chi tiết
Phan Quốc Tú
Xem chi tiết
Nguyễn Thanh Tuấn
Xem chi tiết
Phan Minh Chau
Xem chi tiết
Hà Phương Konan
Xem chi tiết
Cao yến Chi
Xem chi tiết