Có:n+1\(⋮\)n+1
=>2n+2\(⋮\)n+1
Mà 2n-1 \(⋮\)n+1
=>(2n+2)-(2n-1)\(⋮\)n+1
=>2n+2-2n+1\(⋮\)n+1
=>3\(⋮\)n+1
=>n+1\(\in\)Ư(3)={-1;1;3;-3}
Nếu n+1=1=>n=0
Nếu n+1=-1=>n=-2
Nếu n+1=3=>n=2
Nếu n+1=-3=>n=-4
Có:n+1\(⋮\)n+1
=>2n+2\(⋮\)n+1
Mà 2n-1 \(⋮\)n+1
=>(2n+2)-(2n-1)\(⋮\)n+1
=>2n+2-2n+1\(⋮\)n+1
=>3\(⋮\)n+1
=>n+1\(\in\)Ư(3)={-1;1;3;-3}
Nếu n+1=1=>n=0
Nếu n+1=-1=>n=-2
Nếu n+1=3=>n=2
Nếu n+1=-3=>n=-4
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm n thuộc Z để 2n-1 chia hết cho n+1
tìm n thuộc Z để 2n-1 chia hết cho n-1
Tìm n thuộc Z để 2n -1 chia hết cho n + 1
Tìm n thuộc Z để: (n² + 1) chia hết cho (2n - 1)
Tìm n thuộc Z để
a) 2n-1 chia hết cho n-2
b)n^2-n+2 chia hết cho n-1
c)3n+2 chia hết cho 2n -3
tìm n thuộc z để n+1 chia hết cho 2n-5
tìm n thuộc Z để: 2n+1 chia hết cho n2+ n + 1