Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
DŨNG 2K8

tìm n thuộc N:1/3+1/6+1/10+...+2/n.(n+1)=2003/2004

.
27 tháng 2 2020 lúc 9:56

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(=\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\frac{1}{n+1}=\frac{1}{4008}\)

\(\Rightarrow\)n+1=4008

n=4007

Vậy n=4007

Khách vãng lai đã xóa
An Nhiên
27 tháng 2 2020 lúc 10:26

 TA CÓ :\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{n\left(n+1\right)}\)\(=\frac{2003}{2004}\)

      \(Nhân\)\(cả\)\(hai\)\(vế\)\(với\)\(\frac{1}{2}\),  TA ĐƯỢC :

    \(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{n.\left(n+1\right)}\right)\)\(=\frac{1}{2}.\frac{2003}{2004}\)
=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{n.\left(n+1\right)}\)\(=\frac{2003}{4008}\)

=>\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{n.\left(n+1\right)}\)\(=\frac{2003}{4008}\)

=>\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{n}-\frac{1}{n+1}\)\(=\frac{2003}{4008}\)

=>\(\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)

=>\(\frac{1}{n+1}=\frac{1}{4008}\)

=> \(n+1=4008\)

=> \(n=4007\)Thỏa mãn điều kiện : \(n\in N\))

Vậy n=4007 

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hoang Bao
Xem chi tiết
Hatsune miku
Xem chi tiết
Tạ Lạc Mai
Xem chi tiết
ngô trà my
Xem chi tiết
Loan Mai Thị
Xem chi tiết
Thuỷ kute
Xem chi tiết
phạm nguyên hưng
Xem chi tiết
Balotali
Xem chi tiết
Chu Văn An
Xem chi tiết