\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(=\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\frac{1}{n+1}=\frac{1}{4008}\)
\(\Rightarrow\)n+1=4008
n=4007
Vậy n=4007
TA CÓ :\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{n\left(n+1\right)}\)\(=\frac{2003}{2004}\)
\(Nhân\)\(cả\)\(hai\)\(vế\)\(với\)\(\frac{1}{2}\), TA ĐƯỢC :
\(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{n.\left(n+1\right)}\right)\)\(=\frac{1}{2}.\frac{2003}{2004}\)
=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{n.\left(n+1\right)}\)\(=\frac{2003}{4008}\)
=>\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{n.\left(n+1\right)}\)\(=\frac{2003}{4008}\)
=>\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{n}-\frac{1}{n+1}\)\(=\frac{2003}{4008}\)
=>\(\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)
=>\(\frac{1}{n+1}=\frac{1}{4008}\)
=> \(n+1=4008\)
=> \(n=4007\)( Thỏa mãn điều kiện : \(n\in N\))
Vậy n=4007