a, Để 5/(n-3) là số nguyên thì n -3 phải thuộc vào tập hợp ước của 5 bao gồm 1;-1;5;-5
*n-3=1=>n=4
*n-3=-1=>n=2
*n-3=5=>n=8
*n-3=-5=>n=-2
a, Để 5/(n-3) là số nguyên thì n -3 phải thuộc vào tập hợp ước của 5 bao gồm 1;-1;5;-5
*n-3=1=>n=4
*n-3=-1=>n=2
*n-3=5=>n=8
*n-3=-5=>n=-2
a,Chứng tỏ rằng các phân số sau tối giản, với n là số tự nhiên: \(\frac{n-1}{3-2n}\); \(\frac{3n+7}{5n+12}\)
b,Tìm các số nguyên n để các phân số sau nhận giá trị nguyên: \(\frac{2n+5}{n-1}\); \(\frac{2n+1}{3n-2}\)
Tìm n thuộc Z để các phân số sau đây thuộc giá trị nguyên
\(\frac{3n-2}{n-3}\)
\(\frac{3n-1}{2n+1}\)
\(\frac{2n-3}{3n-2}\)
\(\frac{n^2-2n-3}{2n-1}\)
\(\frac{n}{n^2+1}\)
Tìm n nguyên để các phân số sau có giá trị nguyên:(cần gấp)
a) \(\frac{-5}{n+2}\)b)\(\frac{10}{3-2n}\)c)\(\frac{n-4}{n}\)d)\(\frac{n-3}{n+1}\)
e)\(\frac{2n-7}{n-2}\)f)\(\frac{2-3n}{n-3}\)g)\(\frac{5n-1}{1-3n}\)
Tìm n\(\in Z\)để giá trị các biểu thức sau là các số nguyên:
a. n+1
b.\(\frac{3n+4}{n-2}\)
c. \(\frac{2n+1}{3n-5}\)
d.\(\frac{n^2+9}{n-2}\)
a) 3n + 2 chia hết cho n - 1
b) 2n - 1 chia hết cho 3n - 1
c) 5n - 2 chia hết cho 3 - n
2. Tìm n thuộc Z để các phân số là số nguyên:
a)\(\frac{n+5}{2-n}\)
b)\(\frac{2n+5}{1-n}\)
c)\(\frac{3n-5}{n+2}\)
tìm n thuộc Z để các phân số sâu là số nguyên
\(\frac{5}{3n-1}\) \(\frac{2n-3}{n+1}\) \(\frac{2n-1}{3n+5}\)
a) Tìm n thuộc Z để các phân số sau có giá trị là số nguyên
\(A=\frac{3n+17}{n+2}\)
\(B=\frac{4n-17}{n-1}\)
\(C=\frac{3n-6}{n-1}\)
\(D=\frac{2n+19}{n-3}\)
b) Tìm n thuộc Z để phân số \(P=\frac{n+6}{n+1}\)có giá trị là số tự nhiên
Tìm giá trị nguyên n để các phân số sau nguyên
a)\(\frac{3n+4}{n-1}\) b)\(\frac{6n-3}{3n+1}\) c)\(\frac{n^2+3n-1}{n-2}\) d)\(\frac{n^2+5}{n-1}\)
Cho A=\(\frac{4n+1}{2n+3}\). Tìm \(n\in Z\)để:
A là phân số
A là một số nguyên
A lớn nhất
A nhỏ nhất
\(A=\frac{2n+1}{2-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
Tìm n để:
a.A là 1 phân số
b.A là 1 số nguyên