Đặt n^2 + 4n + 2013 = k^2 (k thuộc N sao)
<=>(n+2)^2+2009=k^2
<=>2009 = k^2-(n+2)^2 = (k-n-2).(k+n+2)
Đến đó bạn tự giải đi nha ( tìm ước của 2009 để tìm n sau đó thử lại rùi kết luận)
n2 + 4n + 2013 là số chính phương .
Đặt n2 + 4n + 2013 = t2 ( t \(\in\)Z+ )
<=> t2 - ( n2 + 4n + 4 ) = 2009
<=> t2 - ( n + 2 )2 = 2009
<=> ( t - n - 2 ) ( t + n + 2 ) = 2009
Ta thấy : t + n + 2 > t - n - 2\(\forall\)t , n \(\in\)Z+
=> t + n = 2009 => t = 1005
t - n - 2 = 1 => n = 1002 ( thỏa mãn )
Vậy n = 1002 thì n2 + 4n + 2013 là số chính phương .
=> ( đpcm )