ta thấy \(2y^2+1\)là số lẻ \(\Rightarrow x^2\)là số lẻ\(\Rightarrow\)x là số lẻ nên x=2k+1 với k là số tự nhiên khác 0.\(\Rightarrow2y^2+1=\left(2k+1\right)^2\Leftrightarrow2y^2+1=4k^2+4k+1\)\(\Rightarrow2y^2=4\left(k^2+k\right)\Rightarrow y^2=2\left(k^2+k\right)\)\(\Rightarrow\)y chẵn \(\Rightarrow\)y=2 \(\Rightarrow\)x=3
x2-2y2=1
=>x2-1=2y2
=>x2-12=2y2
=>(x-1)(x+1)=2y2=y.2y
+)(x-1)(x+1)=2y2
=>x-1=2 và x+1=y2
=>x=3 và x+1=y2
Có x=3,thay vào x+1=y2=>3+1=y2=>y2=4=>y E {-2;2},Mà y là số nguyên tố=>y=2
+)(x-1)(x+1)=y.2y
=>x-1=y và x+1=2y
=>x=y+1 và x+1=2y
Có x=y+1,thay vào x+1=2y => (y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2
do đó x=2+1=>x=3
Vậy tất cả cặp số nguyên tố (x;y) thỏa mãn đề bài là (3;2)