cho \(x,y,z\ge0\)t/m : x+y+z=0
Tìm min \(C=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)
Cho A = \(\dfrac{x+y-2\sqrt{xy}}{x-y}\left(x\ge0;y\ge0;x\ne y\right)\)
1) Chứng minh A = \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) Tính A với x = \(3+2\sqrt{2}\) và y = \(3-2\sqrt{2}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
Tìm GTLN của \(P=\frac{\sqrt{x}+4\sqrt{y}}{\sqrt{x}+2\sqrt{y}}\) với \(x\ge0;y\ge0;x\ne9y\)
Cho các số \(x,y,z\ge0\)thỏa mãn \(x+y+z=1\)
TÌM MIN CỦA \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
Rút gọn
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right).\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
Cho các số \(x,y,z\ge0\)và thoả điều kiện \(x+y+z=1\)
Hãy tìm MIN của \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
x,y>0 thỏa mãn \(x^2+y^2=2\).Tìm min của
A=\(y\sqrt{x^2+3}+x\sqrt{y^2+3}\)
a,tìm min mã của biểu thức sau\(y=\sqrt{x^2-2\sqrt{2}x+2}+\sqrt{y^2-2y+1}\)
biết\(|x|+|y|=5\)
b, tìm min :\(y=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)