Tìm Min P = \(\sqrt{\left(x+1995\right)^2}+\sqrt{\left(x+1996\right)^2}\)
\(x+y=4\Rightarrow\frac{x+y}{2}=2\Rightarrow\sqrt{\frac{x+y}{2}}=\sqrt{2}\)
\(P.\sqrt{\frac{x+y}{2}}=\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P\ge x+\frac{1}{x}+y+\frac{1}{y}\)
\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge4-3x\)
\(y+\frac{1}{y}=\left(\frac{1}{y}+4y\right)-3y\ge4-3y\)
\(\Rightarrow\sqrt{2}P\ge8-3\left(x+y\right)=8-3.4=-4\)
đến đay sau răng
BÀI 1: Cho các đẳng thức sau: \(x+y=5\), \(xy=1\)(điều kiện x+y+5 có thể thành \(x=5-y\)). Tính :
a)\(\left(x^2+\frac{1}{x}\right)\left(y^2+\frac{1}{y}\right)\) c)\(x^3+x^4+y^3+y^4\) e) \(\sqrt{x+1}+\sqrt{y+1}\) g) \(\sqrt[x]{y}+\sqrt[y]{x}\)
b)\(x^3+y^3+\frac{1}{x}+\frac{1}{y}\) d)\(x^2-y^2\) f) \(\sqrt[x]{x}+\sqrt[y]{y}\) h)\(x^5+y^5;x^6+y^6;x^7+y^7\)
BÀI 2: Cho x+y = m+1; xy = m-2
a) tìm min A= \(x^2\left(y^2+1\right)+y^2\left(x^2=1\right)\)
b) tìm min B= \(1-x^2-y^2\)
c) tìm min C= \(\left(x+2y\right)\left(y+2x\right)\)
d) tìm min D= \(\left(x-3y\right)\left(y-3x\right)\)
nhanh tay
1.Rút gọn:
a) \(A=\sqrt{2+\sqrt{3}.}\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
b) \(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)
c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)
Rút gọn :\(\frac{x}{\left(\sqrt{x}+\sqrt{y}\right).\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right).\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right).\left(1-\sqrt{y}\right)}\)
Rút gọn:
\(A=1-\left[\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}+\dfrac{2x-1+\sqrt{x}}{1-x}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
\(B=\left[1:\frac{2x-1}{x-x^2}\right]\cdot\left[\frac{2x^3+x^2-x}{x^3-1}-2-\frac{1}{x-1}\right]\)
Giải phương trình: \(\frac{\left(x^6+3x^4\sqrt{x^2-x+1}\right)\left(3+x-x^2\right)}{4\left(2+\sqrt{x^2-x+1}\right)\left(x^2-x+1\right)}=\sqrt{x^2-x+1}\left(2-\sqrt{x^2-x+1}\right)\)
Giải phương trình: \(\frac{\left(x^6+3x^4\sqrt{x^2-x+1}\right)\left(3+x-x^2\right)}{4\left(2+\sqrt{x^2-x+1}\right)\left(x^2-x+1\right)}=\sqrt{x^2-x+1}\left(2-\sqrt{x^2-x+1}\right)\)
Cho x,y>0 tm xy+x+y=1. Tính
\(S=x\sqrt{\frac{2\left(1+y^2\right)}{1+x^2}}+y\sqrt{\frac{2\left(1+x^2\right)}{1+y^2}}+\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{2}}\)