cho a;b;c là các số thực dương thỏa mãn abc=1.Tìm Min của \(P=\frac{a^2}{\left(a+1\right)\left(b+1\right)bc}+\frac{b^2}{\left(b+1\right)\left(c+1\right)ca}+\frac{c^2-a^2b-ab-a-1}{\left(c+1\right)\left(a+1\right)ab}\)
\(A=\frac{a^2+bc}{b+ac}+\frac{b^2+ca}{c+ab}+\frac{c^2+ab}{a+bc}\)
\(=\frac{3\left(a^2+bc\right)}{\left(a+b+c\right)b+3ac}+\frac{3\left(b^2+ca\right)}{\left(a+b+c\right)c+3ab}+\frac{3\left(c^2+ab\right)}{\left(a+b+c\right)a+3bc}\)
\(\ge\frac{3\left(a^2+bc\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(b^2+ca\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(c^2+ab\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}=3\)
cho a. b, c >0. Tìm Min:
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)
Giups mình vói tối nay mk hk r
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm min
M=\(\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}\)
cho a;b;c là các số thực dương.Tìm Min của biểu thức:
\(A=\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\frac{a^3+b^3+c^3}{4abc}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3;a\ge c\) TÌm Min
\(P=\frac{1}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{3}{\left(c+1\right)^2}\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
Cho a,b,c>0. Có ab+bc+ca=2011abc
Tìm Min Q=\(\frac{1}{a\left(2011a-1\right)^2}+\frac{1}{b\left(2011b-1\right)^2}+\frac{1}{c\left(2011c-1\right)^2}\)
Cho a,b,c là các số thực dương Tìm GTNN của:
\(P=\frac{\left(a+b+c\right)^2}{30.\left(a^2+b^2+c^2\right)}+\frac{a^3+b^3+c^3}{4.abc}-\frac{131.\left(a^2+b^2+c^2\right)}{60.\left(ab+bc+ca\right)}\)