Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Ngọc Linh

Tìm Min , Max nếu có

A=(x-1)(x+2)(x+3)(x+6) +2020

nguời bí ẩn ko có tên
7 tháng 8 2020 lúc 20:59

Địt con cụ

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
7 tháng 8 2020 lúc 21:00

Dễ thấy x càng lớn thì A càng lớn

vậy ko có Max

Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)

\(=a^2-6a+6a-36+2020\)

\(=a^2+1984\ge1984\left(a^2\ge0\right)\)

Vậy Min A = 1984 

Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Khách vãng lai đã xóa
Lãnh Hàn Thiên Kinz
7 tháng 8 2020 lúc 21:09

nguoif bí ẩn ko có tên ko đc nói bậy

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hoa
Xem chi tiết
Sang Chi
Xem chi tiết
titanic
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Tạ Thu Thủy
Xem chi tiết
viet nguyen
Xem chi tiết
Edokawa Conan
Xem chi tiết
Xem chi tiết
Thy Anh
Xem chi tiết