Bình phương A ta được A=\(8+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
A min khi (x-2)(6-x) nhỏ nhất tương đương vs x=2 hoặc x=6. khi đó A=2 là nhỏ nhất
A max khi (x-2)(6-x) lớn nhất do 2 số kia có tổng ko đổi nên tích lớn nhất khi x-2=6-x tương đương với x=4
khi đó A=4 là lớn nhất
Đúng 0
Bình luận (0)
\(A^2=x-2+6-x+2\text{ }\sqrt{\left(x-2\right)\left(6-x\right)}=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)
Vậy GTNN là 2 tại A x = 2 ; x = 6
Vì \(2\sqrt{\left(x-2\right)\left(6-x\right)}\le x-2+6-x=4\)
=> \(A^2\le4+4=8\Rightarrow A\le2\sqrt{2}\)
Vậy GTLN của A là ... tại x = 4
Đúng 0
Bình luận (0)