Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
minh

tìm min của x2-2x+7

4x^2+2x+9

tìm max của 

-x^2 +2x +7

Ahwi
16 tháng 6 2019 lúc 17:15

1/ \(x^2-2x+7\)

\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+7\)

\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\frac{1}{4}+7\)

\(=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+7\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\)

Có  \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)

\(\Rightarrow GTNNx^2-2x+7=\frac{27}{4}\)

               với  \(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)

2/ \(4x^2+2x+9\)

\(=\left(2x\right)^2+2\cdot2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+9\)

\(=\left(2x+\frac{1}{2}\right)^2-\frac{1}{4}+9\)

\(=\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\)

có \(\left(2x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\)

\(\Rightarrow GTNN4x^2+2x+9=\frac{35}{4}\)

                với  \(\left(2x+\frac{1}{2}\right)^2=0;x=-\frac{1}{4}\)


Các câu hỏi tương tự
Chuyengia247
Xem chi tiết
NGUYỄN DOÃN ANH THÁI
Xem chi tiết
fan FA
Xem chi tiết
Cody_Uni5
Xem chi tiết
Lê Văn Hoàng
Xem chi tiết
Nước Nam Người
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
nguyen anh chi
Xem chi tiết
Nameless
Xem chi tiết