1/ \(x^2-2x+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\)
Có \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)
\(\Rightarrow GTNNx^2-2x+7=\frac{27}{4}\)
với \(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)
2/ \(4x^2+2x+9\)
\(=\left(2x\right)^2+2\cdot2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+9\)
\(=\left(2x+\frac{1}{2}\right)^2-\frac{1}{4}+9\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\)
có \(\left(2x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\)
\(\Rightarrow GTNN4x^2+2x+9=\frac{35}{4}\)
với \(\left(2x+\frac{1}{2}\right)^2=0;x=-\frac{1}{4}\)