x^2 +2y^2 +2xy +2x+2y -3 = O
Tìm max min của Q = x+y
1. Cho x,y,z >0 t/m: \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}=2\)
Tìm max (xyz)
2. Cho \(2x^2+y^2-2xy=1\)
a) CM: |x| ≤ 1
b) Tìm max \(P=4x^4+4y^4-2x^2y^2\)
Cho xy+yz+zx=2xyz ; x,y,z>0 Tìm max \(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
Cho 2 số thực dương x,y thoả mãn 4xy=1. Tìm GTNN của biểu thức \(M=\frac{2x^2+2y^2+12xy}{x+y}\)
\(\left\{{}\begin{matrix}x-2y=-3m-4\\2x+3y=8m-1\end{matrix}\right.\)
tìm m để hệ có nghiệm (x;y):
a. \(y^2+3x-1\) đạt Min
b. \(x^2-y^2\) đạt Max
tìm các cặp số (x;y) thỏa mãn cả hai phương trình: \(x^2+4y^2+x=4xy+2y+2\)và \(4x^2+4xy+y^2=2x+y+56\)
Ai nhanh mình tick nha!!
Cho x,y >0 và x+y=2015
a, Tìm max của: M= \(\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b, Tìm min của: N= \(\left(1+\frac{2015}{x}\right)^2+\left(1+\frac{2015}{y}\right)^2\)
Cho xy+yz+xz=2xyz (x,y,z>0). Tìm Max P= \(\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2z^2x^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
tìm nghiệm nguyên của phương trình
1. \(5x^2+y^2+4xy+4x+2y-3=0\) 0
2. \(x^2+y^2\)= \(2x^2y^2\)