\(B=-\left(x^2-2.\frac{x}{6}+\frac{1}{36}\right)+\frac{1}{36}-\frac{5}{3}\)
\(B=-\left(x-\frac{1}{6}\right)^2-\frac{59}{36}\ge-\frac{59}{36}\)
Bmax = -59/36 khi x = 1/6
\(B=-\left(x^2-2.\frac{x}{6}+\frac{1}{36}\right)+\frac{1}{36}-\frac{5}{3}\)
\(B=-\left(x-\frac{1}{6}\right)^2-\frac{59}{36}\ge-\frac{59}{36}\)
Bmax = -59/36 khi x = 1/6
1) Tìm MAX A = 3 - 4x2 - 4x ; \(B=\frac{1}{x^2+6x+11}\)
2) Tìm Min
a,3x^2 - 3x + 1
b,|3x - 3| + |3x - 5|
Tìm Min hoặc Max:
a, Y \(=\frac{-2x^2+3x+5}{x^2+2x+1}\)
b , Y \(=\frac{-3x^2-4x+7}{x^2-2x+1}\)
cho bt \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a, rút gọn A
b,tìm x nguyên để max
tìm MAX
A=11-10x-x^2
B=5-8x-x^2
C=-3x(x+3)-7
tìm max của c= \(\frac{3x^2+6x+10}{x^2+2x+3}\)
b1 Cho x>4 tìm Min \(A=a+\frac{1}{a}\)
b2 Cho x>0 tìm Min \(B=\frac{3x^4+16}{x^3}\)
B3 0<x<2 tìm Max \(C=\frac{3}{1-x}+\frac{4}{x}\)
A=\(\left(\frac{4x}{x+2}-\frac{x^3-8}{x^3+8}\times\frac{4x^2-8x+16}{x^2-4}\right)\)) : \(\frac{16}{x+2}\times\frac{x^2+3x+2}{x^2+x+1}\)
a)rút gọn A
b) vs gt nào của x thì A+B có gt Max. Tìm gt lớn nhất đó
Tìm max A=\(\frac{3x^26x+7}{x^2-2x+5}\)
ai nhanh mik tick cho