Hàm số f(x) = 2.sinx + sin2x trên đoạn 0 , 3 π 2 có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Khi đó M+m bằng:
A . - 3 3
B . 3 3
C . - 3 3 4
D . 3 3 2
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2 sin x + cos 2x trên đoạn 0 , π . Khi đó 2M + m bằng
A. 4
B. 5/2
C. 7/2
D. 5
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 3 + ( k 2 - k + 1 ) x trên đoạn [-1;2]. Khi k thay đổi trên ℝ , giá trị nhỏ nhất của M - m bằng.
Cho f(x)=1/3(m-1)x³-mx²+(m+2)x-5. Tìm m để a)f'(x) lớn hơn hoặc bằng 0 với mọi x b)f'(x) nhỏ hơn hoặc bằng 0 với mọi x c)f'(x)=0 có 2 nghiệm cùng âm d)f'(x)=0 có nghiệm thỏa mãn x1+2x2=1
Với tất cả các giá trị thực nào của tham số m thì hàm số y = x 3 - 3 ( m + 1 ) x 2 + 3 m ( m + 2 ) x nghịch biến trên đoạn [0;1]?
A. - 1 ≤ m ≤ 0
B. - 1 < m < 0
C. m ≥ - 1
D. m ≤ 0
Cho hàm số f(x)=-x^3-2x^2+mx-3,m là tham số .Có bao nhiêu giá trị nguyên m thuộc đoạn [-2021;2021] để f'(x) >0 với mọi x thuộc (0;1)
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2. sin x trên
đoạn - π 6 , 5 π 6 . Tính M, m.
A. M= 1, m = -1
B. M = 2, m = -2
C. M =1, m = -2
D. M = 2, m = -1
tìm các giá trị của m để hàm số
a) \(y=\dfrac{mx+25}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
b) \(y=\dfrac{x+2}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;-5\right)\)
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 - ( m + 1 ) x 2 + ( m 2 + 2 m ) x - 3 nghịch biến trên khoảng ( 0 ; 1 )
A. [ - 1 ; + ∞ )
B. ( - ∞ ; 0 ]
C. [ - 1 ; 0 ]
D. [ 0 ; 1 ]