\(u+v=1\Rightarrow v=1-u\)
Thế vào \(uv=-42\Rightarrow u\left(1-u\right)=-42\)
\(\Rightarrow u^2-u-42=0\Rightarrow\left[{}\begin{matrix}u=7\Rightarrow v=-6\\u=-6\Rightarrow v=7>u\left(loại\right)\end{matrix}\right.\)
\(u+v=1\Rightarrow v=1-u\)
Thế vào \(uv=-42\Rightarrow u\left(1-u\right)=-42\)
\(\Rightarrow u^2-u-42=0\Rightarrow\left[{}\begin{matrix}u=7\Rightarrow v=-6\\u=-6\Rightarrow v=7>u\left(loại\right)\end{matrix}\right.\)
cho 2 số u và v biết uv = 9 và u + v = 22 khi đó U và v là hai nghiệm của phương trình
Trong mặt phẳng tọa độ Oxy, cho hai vectơ u → = 1 2 i → − 5 j → và v → = k i → − 4 j → . Tìm k để vectơ u → vuông góc với v →
A. k = 20
B. k = -20
C. k = -40
D. k= 40
Trong mặt phẳng tọa độ Oxy, cho hai vectơ u → = 1 2 i → − 5 j → và v → = k i → − 4 j → . Tìm k để vectơ u → → vuông góc với v →
A. k = 20
B. k = -20
C. k =- 40
D. k =40
Cho hai vecto \(\overrightarrow{u}\)=(2;a) và \(\overrightarrow{v}\)=(1;-1). Tính a để \(\overrightarrow{u}\).\(\overrightarrow{v}\)= 1
Cho u → = 1 / 2 ; - 5 ; v → ( m ; 4 ) . Hai vectơ u → và v → cùng phương khi m bằng:
A. 1/2
B. 5/2
C. - 2/5
D. 2
Trong mặt phẳng tọa độ Oxy, cho hai vectơ u → = 4 ; 1 và v → = 1 ; 4 . Tìm m để vectơ a → = m . u → + v → tạo với vectơ b → = i → + j → một góc 450.
A. m = 4
B.m = -1/2
C.m = -1/4
D.m = 1/2
Trong mặt phẳng tọa độ Oxy cho hai vectơ u → = i → + 2 j → ; v → = k i → + 2 j → . Tìm k để vectơ u → vuông góc với vectơ v →
A. k = 2
B. k = 8
C. k = -4
D. k = 4
Cho u → = 2 i → − j → và v → = i → + x j → . Xác định x sao cho u → và v → cùng phương.
A. x = − 1
B. x = − 1 2
C. x = 1 4
D. x = 2
Cho DABC có trọng tâm G. Cho các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA, AB và I là giao điểm của AD và EF. Đặt u → = A E → ; v → = A F → Hãy phân tích các vectơ A G → theo hai vectơ u → ; v →
A. A G → = 2 u → + 2 v →
B. A G → = 3 u → + 3 v →
C. A G → = 2 3 u → + 2 3 v →
D. tất cả sai