Lời giải:
Gọi số lớn là a và số bé là b. Ta có:
$a+b=7\times (a-b)$
$a+b=7\times a-7\times b$
$a+b+7\times b=7\times a$
$8\times b+a=7\times a$
$8\times b=7\times a-a=6\times a$
$8\times b:2=6\times a:2$
$4\times b=3\times a(*)$
Và:
$a-b+30=b$
$a+30-b=b$
$a+30=b+b=2\times b$. Thay $2\times b=a+30$ vào chỗ $(*)$:
$2\times 2\times b=3\times a$
$2\times (a+30)=3\times a$
$2\times a+60=3\times a$
$60=3\times a-2\times a$
$60=a$
$2\times b=a+30=60+30=90$
$b=90:2=45$
Vậy số bé là 45 và số lớn là 60.