Lời giải:
Gọi $ƯCLN(a,b)=d$ thì đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
$\Rightarrow BCNN(a,b)=dxy$.
Ta có:
$dxy+d=15$
$\Rightarrow d(xy+1)=15$
$\Rightarrow 15\vdots d\Rightarrow d\in \left\{1; 3; 5; 15\right\}$
Nếu $d=1$ thì $xy+1=15\Rightarrow xy=14$
$\Rightarrow (x,y)=(1,14), (2,7), (7,2), (14,1)$
$\Rightarrow (a,b)=(1,14), (2,7), (7,2), (14,1)$
Nếu $d=3$ thì $xy+1=5\Rightarrow xy=4$
$\Rightarrow (x,y)=(1,4), (4,1)$ (do $x,y$ nguyên tố cùng nhau)
$\Rightarrow (a,b)=(3,12), (12,3)$
Nếu $d=5$ thì $xy+1=3\Rightarrow xy=2$
$\Rightarrow (x,y)=(1,2), (2,1)$
$\Rightarrow (a,b)=(5,10), (10,5)$
Nếu $d=15$ thì $xy+1=1\Rightarrow xy=0$ (loại)