1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
(1) 1>.-3x.(x2 +7x- 1/3)
2. -5x2y4(3x2y3-2x3y2-xy)
3. \(\dfrac{1}{2}\)x3y .(2x4y3-4xy-6)
4. -2x.(3x+20
5. 3x.(5-2x)
6. 2x.(2x2-4x+5)
7. 4x3y2.(-2x2y+4x4-3y2)
8.\(\dfrac{1}{2}\)x3y.( 2x4y3- 4xy -6)
Bài 3: Chứng minh rằng biểu thức sau ko phụ thuộc vào biểu thức
A=(x-5)(2x+3)-2x(x-3)+x+7
B=4(y-6)-y22(2+3y)+y(5y-4)+3y2
Bài 4:
a)4a2-16b2
b) 4x2-4x+1
c.1) (2x+y)2-x2
c,2) y2+_x-y2
d) (x-y)2-(2x-y)2
e) 8x3-y3
i)3x+6y+(x+2y)
j) ax-ay-x+y
k) 2x2-y+6x2y-3y2
Cho 2 số thực dương x;y thoả mãn \(\frac{4}{x^2}+\frac{5}{y^2}\ge9.\)Tìm giá trị nhỏ nhất của \(Q=2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
Cho x,y >0 và \(\frac{4}{x^2}+\frac{5}{y^2}\)>= 9. Tìm min K= \(2x^2\)+ \(\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
8,Thực hiện phép tính
a,\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
b,\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c,\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
d,\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
e,\(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
f,\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
tìm giá trị của biểu thức Q= 2x2-3xy/x2+3y2 với 2x+y=11z và 3x-y=4z
Cho hai số thực dương x, y thỏa mãn
\(\frac{4}{x^2}+\frac{5}{y^2}\ge9\)
Tìm giá trị nhỏ nhất của biểu thức \(Q=2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
CẦN GẤP TRƯỚC 13h
Bài 1. Thực hiện phép tính:
a) 2xy(x2+ xy - 3y2)
b) (x + 2)(3x2 - 4x)
c) (x3 + 3x2 - 8x - 20) : (x + 2)
d) (x + y)2 + (x – y)2 – 2(x + y)(x - y) e) (a + b)3 - (a – b)3 – 2b3
f) 2x2(x – 2)+ 3x(x2 – x – 2) –5(3 – x2)
g) (x – 1)(x – 3) – (4 – x)(2x + 1) – 3x2 + 2x – 5
cho x+y=5
P=3x2-2x+3y2-2y+6xy-100
Q=x3+y3-2x2-2y2+3xy(x+y)-4xy+3(x+y)+10