Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Hiền

Tìm GTNN :\(\sqrt{x^2+4x+11}+\sqrt{x^2-8x+23}\) Ai biết làm ghi rõ từng bước với ạ, dạng này em chưa rành .Cảm ơn mọi người đã giúp đã em

Mr Lazy
17 tháng 6 2016 lúc 21:55

\(A=\sqrt{\left(x+2\right)^2+7}+\sqrt{\left(x-4\right)^2+7}\)

Dạng bài này sử dụng bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)

Chứng minh: 

\(\left(1\right)\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

\(+\text{Nếu }ac+bd< 0\text{ thì }VT\ge0>VP,\text{ bđt luôn đúng.}\)

\(\text{+Nếu }ac+bd>0\)

\(\text{bđt}\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)

Do bđt cuối đúng nên bất đẳng thức đã cho cũng đúng.

Vậy ta có đpcm.

Dấu bằng xảy ra khi \(ad=bc\)

\(A=\sqrt{\left(x+2\right)^2+\left(\sqrt{7}\right)^2}+\sqrt{\left(4-x\right)^2+\left(\sqrt{7}\right)^2}\)

\(\ge\sqrt{\left(x+2+4-x\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}\)

\(=\sqrt{64}=8.\)

Dấu bằng xảy ra khi \(\left(x+2\right).\sqrt{7}=\left(4-x\right).\sqrt{7}\Leftrightarrow x+2=4-x\Leftrightarrow x=1.\)

Vậy GTNN của biểu thức là 8.


Các câu hỏi tương tự
Nguyễn Ngọc Hiền
Xem chi tiết
Nguyễn Ngọc Hiền
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Thuy Linh Nguyen
Xem chi tiết
Lương Quốc Tuấn
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết
~ ~ ~Bim~ ~ ~♌ Leo ♌~...
Xem chi tiết
Trần Hương
Xem chi tiết