\(R=9x^2-6xy+y^2+y^2+5=\left(3x-y\right)^2+y^2+5\)
Ta thấy \(\left(3x-y\right)^2\ge0\)
\(y^2\ge0\)
suy ra \(R\ge0+0+5=5\)
dấu bằng xảy ra khi y=0 và 3x-y=0 hay x=0 và y=0
\(9x^2-6xy+2y^2+5=\left(3x\right)^2-6xy+y^2+y^2+5=\left(3x-y\right)^2+y^2+5\)
mả \(\left(3xy-y\right)^2+y^2\ge0\)
nen \(\left(3x+y\right)^2+y^2+5\ge5\)
dau bang say ra khi \(\left(3x+y\right)^2+y^2=0\)
vậy gái trị nhỏ nhất của biểu thức là 5