Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Stephanie Hwang

tìm gtnn: p=x^2 + 2y^2 + 2xy - 6x -8y +2018

Không Tên
7 tháng 5 2018 lúc 21:27

\(x^2+2y^2+2xy-6x-8y+2018\)

\(=x^2+y^2+9+2xy-6x-6y+y^2-2y+1+2008\)

\(=\left(3-x-y\right)^2+\left(y-1\right)^2+2008\)  \(\ge2008\)

Dấu '=' xảy ra   \(\Leftrightarrow\)\(\hept{\begin{cases}3-x-y=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy Min P = 2008  <=> x=2; y=1

do linh
7 tháng 5 2018 lúc 21:28

\(p=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)

\(=\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2008\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)\(\ge2008\)với \(\forall x,y\)

Dấu "=" xảy ra khi  y = 1;  x = 2

_Guiltykamikk_
8 tháng 5 2018 lúc 15:59

\(P=x^2+2y^2+2xy-6x-8y+2018\)

\(P=\left(x^2+2xy+y^2\right)+y^2-6x-8y+2018\)

\(P=\left[\left(x+y\right)^2-2\left(x+y\right)\times3+9\right]+\left(y^2-2y+1\right)+2008\)

\(P=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)

Mà  \(\left(x+y-3\right)^2\ge0\)

       \(\left(y-1\right)^2\ge0\)

\(\Rightarrow P\ge2008\)

Dấu " = " xảy ra khi :

\(\hept{\begin{cases}x+y-3=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy Min P = 2008 khi ( x;y ) = ( 2;1 )


Các câu hỏi tương tự
uchiha itachi
Xem chi tiết
Nguyen Hai Dang
Xem chi tiết
Lê Đình Nam
Xem chi tiết
Dương Chí Thắng
Xem chi tiết
Vinh Lê Thành
Xem chi tiết
Minty Nguyễn
Xem chi tiết
Lê Kim Anh
Xem chi tiết
Demngayxaem
Xem chi tiết
Chủ acc bị dính lời nguy...
Xem chi tiết