Đề thiếu , phải cho x,y >0
\(P=3y+\frac{4}{y+1}+6x-5+\frac{5}{x-2}\)
\(\Leftrightarrow P=3y+3+\frac{4}{y+1}+6x-12+\frac{5}{x-2}+4\)
Áp dụng bdt cosi
\(3\left(y+1\right)+\frac{4}{y+1}\ge2\sqrt{3\left(y+1\right).\frac{4}{y+1}}=2\sqrt{12}\)
T Tự \(6x-12+\frac{5}{x-2}=6\left(x-2\right)+\frac{5}{x-2}\ge2\sqrt{30}\)
\(\Leftrightarrow P\ge2\sqrt{12}+2\sqrt{20}+4=2\left(\sqrt{12}+\sqrt{20}+2\right)\)
Vậy MIn P = ... <=> x = \(\orbr{\begin{cases}\sqrt{\frac{5}{6}}+2\\-\sqrt{\frac{5}{6}}+2\end{cases}}\)và y = \(\orbr{\begin{cases}\sqrt{\frac{4}{3}}-1\\-\sqrt{\frac{4}{3}}-1\end{cases}}\)