\(A=\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}\cdot\dfrac{1}{\sqrt{x}}}=2\\ A_{min}=2\Leftrightarrow x=1\\ B=\dfrac{x-4+9}{\sqrt{x}+2}=\sqrt{x}-2+\dfrac{9}{\sqrt{x}+2}\\ B=\sqrt{x}+2+\dfrac{9}{\sqrt{x}+2}+4\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{9}{\sqrt{x}+2}}+4\\ B\ge2\sqrt{9}+4=10\\ B_{min}=10\Leftrightarrow\sqrt{x}+2=3\left(\sqrt{x}+2\ge2\right)\Leftrightarrow x=1\)